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Close interactions between pairs of two-dimensional vortices of like sign were 
investigated in experiments with barotropic vortices and baroclinic vortices. The 
vortices were generated by sources or sinks in a rotating fluid which, respectively, 
was homogeneous or contained a two-layer density stratification. For two identical 
anticyclonic, unstratified vortices there was a critical separation distance beyond 
which the vortices coalesced to form a single larger anticyclone. The critical distance 
d, ,  scaled by the radius R of a core having non-zero relative vorticity, was 
d, /R = 3.3k0.2.  This value is in agreement with results of previous numerical 
simulations for finite-area vortices in non-rotating flows. The effects on vortex 
structure of Ekman pumping due to the presence of a rigid boundary caused cyclonic 
vortices to coalesce from larger distances. Baroclinic vortices in a two-layer 
stratification were also found to coalesce despite a potential-energy barrier. However, 
the critical separation distance depended on the internal Rossby radius. When the 
Rossby radius was large compared with the core radius, vortices coalesced from 
distances much greater than the critical distance for barotropic vortices. Coalescing 
of two vortices of equal size and strength led to two symmetric entwined spirals of 
water, while close interaction of unequal vortices caused the weaker vortex to be 
wrapped around the outer edge of the stronger. Implications of these results are 
discussed for ocean eddies and intense atmospheric cyclones. 

1. Introduction 
Numerical simulations using the Euler equations have shown that inviscid 

two-dimensional vortices with finite cores of anomalous vorticity will coalesce 
when the distance d between vortex centres is sufficiently small (Christiansen 1973; 
Christiansen & Zabusky 1973; Overman & Zabusky 1982). For two identical Rankine 
vortices (which have cores of uniform vorticity) embedded in a fluid with no 
background rotation and no density gradients the numerical studies indicate that the 
critical separation is d, /R x 3.2, where R is the core radius (although the exact value 
of d, /R depends to some extent upon the nature of the imposed perturbation and 
the initial shape assumed for the vortices - Overman & Zabusky 1982; Dritschel 
1985). At separation distances smaller than the critical value the velocity field 
induced by each vortex causes the finite core of the other to become increasingly 
distorted, until each core is drawn out and advected around the other. At  larger 
separations the cores may experience some oscillatory perturbations but remain 
separate (Overman & Zabusky 1982). The process of coalescing has been termed 
‘convective merging’ (Rossow 1977) or vortex ‘pairing’, the latter description 
originating in observations of the cascade of pair-wise interactions of vortices in 



74 R. W .  Grifiths and E.  J .  Hopfinger 

unstable shear layers. ‘Pairing ’ of two-dimensional vortices is responsible for the 
growth of mixing layers (Winant & Browand 1974; Brown & Roshko 1974) and is 
observed in the later stages of the development of Kelvin-Helmholtz billows (Thorpe 
1973). The application of point-vortex methods to simulate vortex interactions has 
been reviewed by Aref (1983). However, apart from the experiments with trains of 
vortices, as in shear layers, there have been few laboratory investigations of the close 
interactions between two-dimensional vortices. Fujiwhara ( 1923) attempted to model 
the behaviour of hurricane pairs using two cyclonic vortices in an unstratified rotating 
tank, while P. Caperan & T. Maxworthy (private communication) recently observed 
interactions of barotropic vortices generated by moving flaps in a non-rotating tank. 

In recent laboratory experiments aimed at studying the combined influence of 
background (or planetary) rotation and density stratification on the interactions of 
vortex dipoles (Griffiths & Hopfinger 1986) it was noticed that vortices of the same 
sign and in the same layer of a two-layer stratification sometimes coalesced. 
Coalescing took place when the baroclinic vortices were brought close together by 
the advective velocities induced by all other vortices in the container. It occurred 
most often when the internal Rossby radius of deformation was large. Evolution of 
the flow then deviated from that predicted by treating each vortex as a point vortex 
moving passively with the ambient-fluid velocity (Hogg & Stommel 1985). 

Eddies in oceans and atmospheres are strongly influenced by vertical density 
gradients in the fluid. Hence interactions of baroclinic geostrophic vortices are of 
interest both in studies of the dynamics of individual eddy collisions and for their 
contribution to the dynamics of geostrophic turbulence. However, the conditions 
under which eddies (i.e. vortices with finite cores) in a stratified rotating fluid will 
coalesce have not been investigated. Calculations of the energy of the flow in an 
ageostrophic model for an eddy with finite radius, including centrifugal forces (Gill 
& Griffiths 1981), show that if the potential vorticity of the fluid is conserved both 
the potential energy and the total energy of the flow must increase when two eddies 
coalesce into one. In  this model the depth of one layer (the fluid within the eddies) 
is constrained to vanish on the perimeter of each eddy (a model for eddies formed 
by instability at oceanic density fronts, Flier1 1979), so that velocities are zero outside 
the eddies and each eddy possesses a well-defined total energy. These we refer to as 
isolated frontal eddies. We conclude that coalescing of such eddies would require 
either an external energy source or an alteration of the potential vorticity in the 
eddies. Quasi-geostrophic eddies, on the other hand, where the eddies induce small 
vertical displacements of density surfaces, are not isolated as the flow has a velocity 
which decays at large distances as the inverse of the distance from the eddy centre. 
Such eddies involve a finite potential energy but an unbounded kinetic energy (if in 
a horizontally unbounded container), as is shown clearly by the point-vortex model 
of Hogg & Stommel(l985). However, the point-vortex model shows that if potential 
vorticity is conserved, the potential energy of the flow must again increase as two 
vortices of the same sign approach each other. In  this case there could be a conversion 
of kinetic to potential energy and it is not clear that either an external energy supply 
or alteration of potential vorticity is necessary for coalescing to be possible. 

The above energy calculations do suggest that merging of baroclinic vortices might 
be less likely than it would be for unstratified barotropic vortices. On the other hand, 
i t  is conceivable that dissipation of potential vorticity is essential, or that the total 
volume of the rotational core after a merger is not equal to the sum of the volumes 
of the initial vortex cores, so that merging of baroclinic vortices becomes possible. 
Of interest here are Dritschel’s (1985) conclusions for finite-area barotropic vortices : 
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under some circumstances two vortices can undergo an inviscid merger into a 6: 1 
ellipse, but a very small amount of dissipation greatly reduces constraints on merging 
and allows coalescing to proceed under a much broader range of conditions. On this 
same point, Pierrehumbert & Widnall (1981) show that conservation of vorticity 
during merger of unstratified shear-layer vortices would imply an increase of energy, 
and conclude that coalescence must in general involve entrainment of irrotational 
fluid. 

Very few examples of coalescing have been documented for ocean eddies. The 
paucity of observations might be a result of a real scarcity of merging events, in turn 
due to an inability of baroclinic eddies to coalesce without sufficient energy input, 
or might simply reflect the practical difficulties encountered in observing, sampling 
and interpreting oceanic flow. Nevertheless, one clear example of coalescing of two 
large warm eddies shed by the East Australia Current was recorded in some detail 
(Cresswell 1982). In  the atmosphere, intense tropical cyclones sometimes form in pairs 
and proceed to orbit around a mutual centre of vorticity (Brand 1970). In  this case 
we have found no record of coalescing, although hurricane pairs with separations of 
less than 750 km show a tendency to attract each other. 

In  this paper we present the results of experiments in which two vortices of the 
same sign, with known strengths and vorticity structure, were generated at desired 
separation distances in a rotating container and subsequently left to interact. Both 
unstratified and baroclinic (two-layer) vortices were investigated. We consider the 
roles of the core radius and Rossby radius in the vortex interactions. Rossby numbers 
for the flow within individual vortices were similar to those for ocean eddies and the 
results are compared with the recorded merging of eddies 'Leo' and 'Maria' in the 
Tasman Sea. 

2. Laboratory apparatus and technique 
The apparatus and method for generating vortices were described in Griffiths & 

Hopfinger (1986). Briefly, experiments were carried out in a circular tank 100 cm in 
diameter, 45 cm deep and rotating about a vertical axis through its centre. In  most 
experiments the rotation rate was Q = 1.0 reds-' in the anticlockwise direction. One 
rotation period was then T, = 21cQ-' = 6.28 s and the background vorticity was 
f = 2.0 s-'. Video, 35 mm and cine cameras mounted above the tank in the rotating 
reference frame recorded the patterns of injected dye and motions of floating or 
neutrally buoyant particles. 

When no stratification was required the tank was filled to a depth of either 20 cm 
or 40 cm with fresh water at  room temperature. The water was spun up to a state 
of solid-body rotation before an experiment was begun. When a two-layer 
stratification was required a layer of fresh water 20 cm deep was spun up and a sugar 
solution fed slowly onto the bottom through a tube at the wall. Once both layers were 
of equal depth the water was left to slowly approach solid-body rotation, although 
this state was never fully reached as diffusion of solute continued to drive a slow 
persistent azimuthal flow of the character described by Griffiths t Linden (1985). 
Vertical traverses with a conductivity probe in several experiments, where sugar was 
replaced by salt, showed that the density interface was approximately 2 cm thick. 
Despite great care during the filling procedure thinner interfaces could not be 
achieved, and we note that the conductivity profiles were essential since the interface 
appeared to the naked eye as though it was only a few millimetres thick. The internal 
Rossby radii h = (gApH/p)V-', based on the layer depth H = 20 cm and the Coriolis 
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parameterf = 2 s-l, were A = 1.5,5,10 and 15 cm. The unstratified case corresponds 
to the limit of vanishing Rossby radius. 

Each vortex was generated by a source (an anticyclone) or a sink (a cyclone) at  
the free surface of the water. These were tubes 3cm in diameter and filled with 
permeable foam. Tubes of smaller diameter were sometimes used as sinks, but the 
behaviour of the vortices showed no dependence on the form of sink used. Flow 
through the sources and sinks was driven by constant-gravitational heads and 
controlled using flowmeters in the non-rotating reference frame. Water supplied to 
sources was of the same temperature and density as the upper layer in the tank. 

When generating two vortices of the same sign the sources (or sinks) were 
positioned a desired distance d apart and were symmetric about the centre of the tank. 
The latter precaution was intended to minimize effects of the sidewall and the slow 
persistent anticyclonic flow in the top layer. Flow through the sources (or sinks) was 
turned on for a fixed period of 30 s, which is close to 5T,. During forcing dye of 
different colours could be injected into the cores of the developing vortices. This dye 
served as a ready guide to the subsequent position and shape of the vortex, as well 
as labelling the water initially within each vortex. As the forcing was turned off digital 
clocks reading elapsed time in rotation periods (to 0.1T’) were started from zero. The 
dye showed that the flow was always independent of depth within each layer of 
uniform density. 

The distribution of horizontal velocity was obtained from time exposures showing 
the horizontal paths of neutrally buoyant beads. The beads were illuminated by a 
horizontal sheet of light 2 cm thick directed alternately through the mid-depth of the 
top layer and the mid-depth of the bottom layer. In unstratified cases the sheet of 
light was approximately 10 cm above the bottom. 

3. Vortex structure 
3.1. A model baroclinic vortex 

Baroclinic vortices are characterized by two horizontal length-scales that are 
generally independent : the Rossby radius of deformation and a core radius. A simple 
model of a two-layer geostrophic vortex is shown in figure 1. Both layers are assumed 
to have equal ‘rest’ depths H .  The fluid having anomalous potential vorticity is 

.confined to the upper layer and forms the vortex core of radius R. The core has a 
uniform potential vorticity II,,, different from the potential vorticity II = f / H  of the 
remainder of the fluid. Since 17 = (f+ ~ ) / T , J ,  where 6 is the relative vorticity and r] the 
height of the column of unstratified fluid, fluid outside the core would have zero 
relative vorticity only if the layer depth locally was equal to H .  This model vortex 
structure is more simple than that expected for oceanic or atmospheric vortices, 
where the potential vorticity may not be entirely uniform within the core, the density 
varies continuously with depth, and fractional variations of layer depth (in oceanic 
frontal eddies) can be large. However, the model does capture the basic features of 
the real flow. 

For anticyclonic laboratory vortices produced by sources, the injected water has 
little angular momentum (6 x -f) and we expect cores with small potential vorticity 
(17, $ f / H ) .  The core size is determined largely by the volume injected. For cyclonic 
vortices generated by sinks, the initial size and structure of the core are determined 
by the diameter of the sink and horizontal diffusion of momentum. Positive relative 
vorticity is created by local stretching of fluid columns as they are drawn into the 
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I 

FIGURE 1. A diagram of the model two-layer geostrophic vortex with piecewise uniform 
potential vorticity. 

sink. However, once the forcing is cut off there is no further stretching of columns 
(apart from that due to motion of the density interface). The potential vorticity is 
then given by the layer depth q( x H )  and the relative vorticity C induced during the 
forcing period. Thus 17 is large near the sink (no > f / H )  but uniform and equal to 
f / H  elsewhere. Neglecting effects of Ekman suction, the bottom layer must have 
uniform potential vorticity 17 = f / H  so long as the interface is not drawn up into the 
sink. 

In  the model the flow is assumed to satisfy the inviscid quasi-geostrophic 
potential-vorticity equations (Pedlosky 1979) : 

(1) I .v2$,+ih,n-2($b-$a) = Hno-f, r < R, 

V2$a+ihj(-'($b-$a) = 0, r > R, 

v2$,b+ih,h-2($a-@b) = 0, 

where subscripts a and b refer to the top and bottom layer, respectively, $ is a stream 
function and h = (g'H)a/f, with g' = gAp/p, is the Rossby radius. The right-hand side 
of (1) is simply the relative vorticity y = Hn-j, which vanishes everywhere outside 
the core. Within the core a potential vorticity no = 0 (as would be achieved by 
injecting water from a line source at r = 0) implies a relative vorticity yo = - f, while 
5, = f corresponds to 17, = 2 f / H .  

In  polar coordinates centred at r = 0, an axisymmetric vortex has azimuthal 
velocities v, = a$,/& and v, = a$,/&. Suitable boundary conditions on the solution 
to fl) are 

I 
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The bottom is taken to be an isopotential surface and the interface height is given 
by 

(3) 
f 

72 = H+y($a-$b) ,  
9 

which is continuous by virtue of the continuity of the stream functions. 
A quasi-geostrophic model similar to that formulated above is presented for point 

vortices by Gryanik (1983) and Hogg & Stommel (1985), in which case each vortex 
is represented as a delta function in potential vorticity in one of the two layers. The 
quasi-geostrophic assumption neglects local accelerations (au/at) relative to coriolis 
accelerations ( 2 a x u ) ,  and takes the relative vorticity to be comparable with 
vorticity associated with stretching of fluid columns by variations in layer depth, but 
small compared with the background vorticity f. While departures from exact 
geostrophic balance are allowed, the model does not include the centrifugal forces 
v2/r  that are associated with finite Rossby numbers c/f and which are significant in 
frontal ocean eddies (Flier1 1979).1 

Solutions to (1) are found by addition and subtraction of equations for the top and 
bottom layers in each of the regions r 5 R. The resulting solutions fc 
$a-$b are then recombined to find 

$a = a+/31nr+yIo(;)+SKo(;) 

$b = a+/31nr-yIo(;)-SKo(f) 

r >  R, 

where a, b, c, d,  a, /3, y and S are constants. Applying the conditions (2) the vortex 
stream functions become$ 

A y 0  = -A+: 2 4 g(,+ A2 In i) + f :[ K, (:)-I,  (f) KO (31 
A=--+-- ; ; ;: b+ In;) +; ; [ K, (;) + 4 (;) KO (;)] 
A"0 

t Another model in which the momentum equation is approximated by an exact geostrophic 
balance but in which the exact equation for conservation of potential vorticity is used, is readily 
solved for the flow of figure 1 and yields velocity profiles of the same form as those derived in this 
paper. However, that model, too, neglects effects of finite Rossby number. 

1 These expressions make use of the identity Z,(z) KO@) +Io@)  K , ( z )  = l/z, where Z,, K, are the 
modified Bessel functions. 
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r < R, 

r > R .  
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1 

A vortex in the top layer displaces the density interface such that 

r <  R,  

r > R.  

!k= 
H (7) 

In  (6) the velocities are normalized by the velocity RC, (rather than the alternative 
scale A&,) as this is the correct scale for the maximum aximuthal velocity in the 
vortex. It is also noteworthy that the shapes of the velocity profiles are not dependent 
upon the value of the vorticity (or potential vorticity) in the core. Thus a cyclone 
and an anticyclone with equal and opposite relative vorticities co have equal and 
opposite velQcities. In  the limit R/A+O, we have I1(R/A)+iR/A and we recover, for 
r > R,  the result for a point vortex (Hogg & Stommel 1985): 

v = 9 1 * i K 1 ( 3 ] ,  2 r  

where the positive sign is for the top layer, the negative sign for the bottom layer. 
The constant s = !jR2Co is the vortex intensity, and the vortex strength is 2 ~ s .  The 
intensity serves as a convenient (and only) multiplying constant in (6) for arbitrary 
values of R / h  also. The circulation r outside the core is a function of distance from 
the vortex centre except in the barotropic limit (A = 0), where r = m. 

The velocity profiles (6) are plotted in figure 2 for three values of the ratio of core 
radius to Rossby radius. In  the limit A/R+O, where the influence of density gradients 
vanishes and the flow becomes independent of depth, the structure approaches a 
Rankine vortex : 

0, = V b  = I;:, r >  R. 
(9) 

At the opposite extreme, A/R >> 1, the maximum velocity at the edge of the core 
approaches v, =iRCo = s /R,  twice that in (9). The upper layer velocity again 
decreases with radius as v, N r-l, but only over distances comparable with the core 
radius. Over the much greater distance A there is now an additional decrease such 
that, at r % A, v, asymptotes to the barotropic velocity (9).  In this strongly stratified 
regime the velocities are independent of depth at r % h and strongly baroclinic at 
r < A. A t  r < h the bottom layer velocity is much smaller than v,, and reaches a 
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FIGURE 2. Examples of the azimuthal velocities (6) predicted for the quasi-geostrophic model in 
figure 1 : -, top-layer velocities; --- , bottom-layer velocities; ---- , the barotropic limit 
AIR = 0. 

maximum value a t  r x 1.M.  For intermediate values of the ratio AIR, interfacial 
shear is always greatest a t  the outer edge of the core, but is smaller for smaller values 
of AIR. At AIR x 1 the top-layer velocity immediately outside the core decreases 
with increasing radius more rapidly than in either the unstratified or ‘strongly 
stratified ’ cases. It must decrease to the barotropic profile within a distance 
comparable to R, and the induced far-field barotropic velocities are a smaller fraction 
of the maximum core velocity than is the case for AIR 6 1 .  

3.2. Structure of the laboratory vortices 
Examples of the measured angular velocities 8 about the vortex centre and linear 
velocities v = rd for the unstratified case are shown in figure 3 (an anticyclone) and 
figure 4 (a cyclone). I n  all cases 8 decreased monotonically with increasing radius, 
while the linear velocity passed through a maximum value at a radius of several 
centimetres. Beyond the velocity maximum the data are well described by the profile 
v - r-l. The relative vorticity g = 28+rd8/dr at small radii was not constant as 
assumed in the model of 53.1, and there was some rounding of the velocity peak. 
However, the structure of barotropic vortices was always close to  that of a Rankine 
vortex, and remained essentially unchanged as the vorticity was dissipated in the 
bottom Ekman boundary layer. The Ekman number based on the kinematic viscosity 
u and the background vorticity was v/fHz x lop5 (for H = 20 cm) or 3 x lops 
(for H = 40 cm), implying an exponential timescale H / (  fu)f x 140 s (or 280 s) for 
dissipation. The smaller time corresponds to 23 rotation periods. 

Between five and ten rotation periods after the forcing was turned off, anticyclones 
were characterized by maximum angular velocities (near r = 0) of 8 x -0.5112, and 
cyclones by 8 x 0.752 to 1.252. Since it is likely that d8/dr = 0 a t  r = 0, the 
maximum vorticity can be evaluated from lo x 28(r = 0). For anticyclones we find 
go x -0.5f and for cyclones c0 x f. On the other hand, a t  the radius of the velocity 
maximum, dvldr = 0, < = 8 and the measurements give 181 x 0.3112 for vortices of 

. 
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RGURE 3. Measured angular velocities (a) and azimuthal velocities (b) in an unstratified anticyclonic 
vortex generated by a source. Measurements were taken a t  10 rotation periods after forcing was 
turned off (0)  and a t  30T, (0). Curves of the form v = $s/r have been fitted to the data at r > 4 cm 
and give the vortex intensities s = -7.0 cm2 8-l at lOT,, s % -3.0 cmz s-l a t  30TQ. Straight lines 
v = ar are suggested for r < 3 cm. The core radius defined by (10) is 3.6 cm. 

both signs. Hence flow near the edge of the core had a Rossby number la/f k: 0.15. 
This relatively small Rossby number is not surprising given that 5 vanishes a small 
distance beyond the radius of maximum velocity and that a discontinuity in vorticity 
cannot exist in the real flow. We also observed that small-scale shear instabilities 
always developed during the formation period of anticyclones. On breaking, these 
instabilities smeared horizontal vorticity gradients. From the above values for 6, the 
potential vorticity at the vortex centre was LI,, %00.5f /H for anticyclones and 
LI,, k: 2f /H for cyclones, where we recall that the fluid depth H in this unstratified 
case was constant after neglecting the very small slope (-c 1 %) of the free surface. 

For vortices in the top layer of a two-layer density stratification, the measured 
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FIGURE 4. Angular velocities (a)  and azimuthal velocities ( b )  memured in a barotropic cyclonic 
vortex generated by a sink. Data are for elapsed times of lOT, (a) and 3OT' (0). Curves of the 
form v = t s / r  are fitted to the data for r > 5 cm and give the vortex intensities 8 = 7.0 cmz s-l at 
lOT,, 8 = 3.6 cmz s-l at 302''. The core radius defined by (10) is 4.0 cm at 102'' and 6.0 cm at 302''. 

velocity profiles (figure 5 )  show the same general structure in the top layer as found 
in the unstratified case. However, with the density difference chosen so as to give 
a Rossby radius h = 5 cm, a clear deviation from the decay v - r-l occurred beyond 
the radius of maximum velocity. The more rapid decrease of velocity is well described 
by the solution (6) to the baroclinic model. Furthermore, the motion in the bottom 
layer was much smaller than that in the top layer at r c 2 4  while the flow became 
independent of depth at r > 3h. A comparison can be made between the measured 
and model velocities (6) for the bottom layer by fitting the predicted form (6) for 
v,(r > R) to  the data from the top layer using an estimate for the ratio R/h ,  
evaluating a multiplying constant (the vortex intensity), and then using that 
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FIGURE 5. Azimuthal velocities measured in a two-layer anticyclone (a) and cyclone (b), each with 
h = 5 cm. Data are from the top layer at  9 rotation periods after generation (0) and from the 
bottom layer at 6TQ (0) and 12T, (A). Solid curves are the profiles (6) predicted for two-layer 
vortices having piecewise uniform potential vorticity in the top layer. Their fit to the data gives, 
in these examples, the vortex intensities s = -4.8 cm* a-l and s = 6.6 cmr s-l. Broken lines are the 
reference curves v = s/2r. Core radii defined by (10) are 4.2 cm in (a) and 3.0 cm in (b). 

constant to compute the bottom-layer velocity w,. The measured bottom layer 
velocities are modelled satisfactorily although they were slightly smaller than those 
predicted. The discrepancy is possibly a result of bottom friction and the finite 
interface thickness. 

The maximum velocities and vorticities measured in top-layer cyclones were 
significantly larger than those in unstratified cyclones and in all anticyclones. 
Stretching of fluid columns provides a greater wpacity for creation of relative 
vorticity than does compression of columns, and the greater vorticity in cyclones is 
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FIGURE 6. The core radius for the laboratory vortices after 5-10 rotation periods had elapsed aa 
a function of the forcing applied during a 30 s period : 0, barotropic cyclones ; , two-layer cyclones 
with A = 5 crn; A, barotropic anticyclones; A, two-layer anticyclones with A = 5 cm. The straight 
lines show a fit by eye to data for vortices of each sign. 

rapidly dissipated in the unstratified case by a bottom Ekman layer. The appropriate 
timescale for the dissipation of the large initial vorticity is H / ( @ ) i  and is shorter than 
that based on the background vorticity. Dissipation of vorticity was slowest for the 
top-layer vortices, which were insulated from the rigid bottom by density gradients. 

The choice of lengthscale used to describe the size of the region of anomalous 
potential vorticity is somewhat arbitrary. A fitting to the measured velocities of the 
model profiles assuming piecewise uniform potential vorticity suggests that the core 
radius R be defined as the radius at which the curves for r 3 R intersect (as seen in 
figures 3-5). On the other hand, interactions between vortices and consequent 
advective perturbation of the axisymmetric potential-vorticity distribution can be 
expected to be dependent upon those potential-vorticity differences that are farthest 
from the vortex centre. A more relevant core radius is therefore assumed to be that 
at which the potential vorticity deviates significantly from its constant value outside 
the core. Hence we choose the well-defined radius R’ at which the velocity v, predicted 
for a uniform potential vorticity outside the core is equal to the maximum ob- 
served velocity urn. For unstratified vortices (9) the core radius becomes 
R’ = ?jg/vrn = r/2xvrn. For general baroclinic vortices 

R = ’[ 1 + 2 I ,  e) K ,  g)] . 
2 0, 

In practice, as shown in figure 5, R’ is very close to the radius at  which the measured 
velocity profile meets that expected for a point vortex of the same strength. 

The detailed velocity measurements for a number of isolated vortices were used 
to establish a calibration between vortex strength, core radius and flow rate through 
sources and sinks. The results for vortex intensity were given in Griffiths & Hopfinger 
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(1986) and showed that the intensity was proportional to the volume of water injected 
or withdrawn. The core radius evaluated between five and ten rotation periods after 
generation is given in figure 6. Anticyclone cores were larger for greater flow rates. 
The radii of cyclone cores varied little, presumably because R was determined largely 
by the dimensions of the sink and by subsequent Ekman pumping. Indeed, the core 
radius for cyclones increased with time (see figure 4) as fluid was pumped into the 
centre via bottom or surface Ekman layers and fluid having anomalous vorticity was 
displaced outward. Top-layer cyclones, which spin down more slowly, therefore had 
slightly smaller core radii after five to ten rotation periods than did barotropic 
cyclones. The radius of anticyclones showed no definite change during spin-up. In 
the following discussion of vortex interactions we characterize each anticyclone and 
each top-layer cyclone by the strength and core radius expected five to ten rotation 
periods after their forcing was turned off. Dissipation of intensities is not of primary 
importance as vortex strengths are compared only to those of other similar vortices 
generated at the same time. For cyclones in contact with the bottom an increase of 
the core radius over tens of rotation periods needs to be taken into account as this 
lengthscale will be compared with the distance between vortices. 

4. Coalescing of unstratified vortices 
4.1. Two identical anticyclones 

The behaviour of cyclonic and anticyclonic pairs in an ideal fluid is expected to be 
identical. However, we observed some differences which will be attributed to viscous 
effects, and therefore discuss the two cases individually. 

When two identical anticyclones were generated in an unstratified tank they began 
to orbit clockwise around their mutual centre of vorticity in the manner expected 
for the advection of each vortex by the velocity field of the other. If the distance 
between sources was suffioiently small the vortices eventually coalesced to form a 
single anticyclonic vortex. If the distance was sufficiently large the anticyclones did 
not coalesce and often appeared to move farther apart. Thus there appears to be a 
critical distance d ,  below which the two-vortex configuration was unstable and above 
which it was stable. In  a sequence of thirteen experiments using the same forcing flow 
rate, the critical separation was 13 cm. Ford = 12.5 cm the vortices coalesced, while 
for d = 13.5 cm they did not merge. If the distance is normalized by the core radius 
R = 3.9 cm the critical condition can be written as dJR' = 3.3f0.2, where the 
uncertainty is due to uncertainties in both d ,  and R'. 

In  cases where merging took place, dye revealed that the flow in each vortex 
became non-axisymmetric just prior to coalescing. A cusp developed on each vortex, 
giving them the appearance of the corotating V-shapes which Saffman t Szeto (1980) 
found as equilibrium solutions to the two-dimensional Euler equations, and which 
are unstable in numerical simulations (Overman t Zabusky 1982; Dritschel 1985). 
Naturally, we must be cautious in identifying the formation of cusps in the dyed water 
with a specific stage in the interaction of vortices, or even with unstable 
configurations. The V-shape occurred in a streamline whose radius was slightly less 
than half the distance between vortex centres and its appearance may simply imply 
that the vortices had moved sufficiently close together for the dyed portion of the 
vortex to be perturbed, the cusps previously existing at larger radii. On the other 
hand, the edge of the dye was, in most cases, close to the edge of the region of 
anomalous vorticity, so that the visible cusps indicated a distortion of the previously 
circular vortex cores. As the cusps grew they met each other and proceeded to be 
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drawn out around the opposite vortex. That is, dyed fluid from each vortex flowed 
around the outer edge of the dyed region of the opposite vortex. If amalgamation 
proceeded, two ‘spiral arms’ extended backward (anticlockwise) from the antipodes 
of the vortices. In the same manner as shown by numerical simulations (Christiansen 
1973; Overman & Zabusky 1982) the combined structure passed through an elliptical 
shape (with axes lengths roughly 2: 1) in which water from each vortex was confined 
to one end of an ellipse. However, the experiments showed that this coalition, the 
new vortex, rapidly became circular and contained two entwined spirals. The 
double-spiral structure was similar to that observed after pairing of vortices in mixing 
layers. 

If the initial separation was close to the critical value, oscillations were often seen 
and the formation of cusps did not always herald coalescing. Vortices could interact 
and exchange some dyed water, but then move apart and become circular again. If 
d 2 d,,  there was no further close interaction. If d 5 d, ,  a second close interaction 
followed and led to complete amalgamation. Oscillations were also noted in the earlier 
numerical calculations. 

The merging of vortices occurred after elapsed times of order 1-20 rotation periods, 
with larger initial separations giving longer times. An appropriate timescale for 
interactions is the period for the advection of vortices around their mutual centre 
of vorticity. This orbital period for barotropic vortices is 2nd2/s.  In the experiments, 
a conveniently identifiable time that characterized coalescence was the elapsed time 
t ,  at which the cusps began to be advected passed each other (see figure 7 b )  
immediately prior to merging. When normalized by the orbital period the elapsed 
time was of order t ,  s/2nd2 - lo-’. Large separation distances tended to give larger 
dimensionless times, although this result was far from clear and reproducible. 

4.2. Two identical cyclones 
Cyclonic vortices in an unstratified tank coalesced in the same manner, qualitatively, 
as did anticyclones. However, in a sequence of sixteen experiments no stability 
boundary was found for cyclones and almost all pairs eventually coalesced. Large 
separations could not be tested as sidewall effects would have been comparable with 
the influence of one vortex on the other, and because the timescale for interactions 
would have been much larger than the spin-down timescale. 

Photographs of the interaction of two cyclones with d/R’ x 4.5 are shown in figure 
7 (Plate 1). The second frame was taken close to the time t ,  at which we judged 
merging to begin. In  this case t, x 30TQ or t ,s/2xde x 0.6. Development of cusps, 
early exchange of dyed water, formation of two outer spiral arms, and final spiral 
structure of the coalition can be seen. In this example, the entwined spirals are not 
symmetric, indicating a small difference in the strengths of the two original vortices. 

The dimensional time t ,  for coalescing increased rapidly with initial separation 
distance, reflecting in part the squared dependence of the orbital period on the 
separation distance. However, even the dimensionless time t, r/27t2d2 increased with 
distance (figure 8). The trend in merging time alone could be attributed to the 
reduction of the vortex strength and increase of the orbital period due to dissipation, 
but this does not explain why cyclones coalesce from distances much larger than the 
critical value for anticyclones. One possible explanation for the apparent absence (or 
large size) of a critical separation distance is that bottom friction causes the core 
radius of cyclones to increase with time. Thus any given (and unstable) value of the 
ratio d/R‘ will eventually be exceeded and the time taken to enlarge the core must 
be added to the elapsed time before merging. 
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(4 (d) 
FIGURE 7. Photographs showing the, coalescence of two unstratified cyclonic vortices. The initial separa- 
tion is 20 cm, s M 9 cm2 s- ’ ,  R M 4.4 cm and the initial orbital period is 44T,. Photographs were 
taken at (a) lOT,, (6) 30T,, (c) 4OT, and (d) 50T, after forcing was turned off. Tank rotation was 
anticlockwise. 

GRIFFITHS & HOPFINGER (ficing p.  86) 
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FIC~URE 9. Photographs of the coalescence of two anticyclones in the top layer: d = 18 cm, 1 = 10 cm, 
R = 4.0 cm, s = 7.4 cm2s- I .  Photographs were taken at the elapsed times shown on the counter (in 
background rotation periods). The orbital period is approximately 44T,. Coalescence begins at the second 
frame. 

GRIFFITHS & HOPFINGER 



Coalescing of geostrophic vortices 87 

t+S 
2nd' 

0 1  I 1 I 
2 3 4 5 

d / R  

FIGURE 8. The dimensionless time elapsed before barotropic cyclones developed overlapping 
cusps and began to coalesce. Merging takes longer for greater separation distances. 

A tendency for cyclones to attract each other was observed in early laboratory 
experiments (Fujiwhara 1913, 1923), where it was attributed to the convergence in 
the bottom friction layer. The convergence was thought to provide an attractive force 
between the cyclones. While this effect may play a minor role in our experiments, 
we note that convergence occurs only in a boundary layer .which is lo-' cm thick. 
Furthermore, the timescale for enlargement of the cyclonic core radius is given by 
the spin-down time (which in turn is only slightly greater than the merging times 
observed for anticyclones). In  fact, calculation of the volume flux in a linear Ekman 
layer shows that the core radius of a cyclone should double in 3&100 rotation periods. 
Direct measurements show that the core radius increased by a factor of about 1.7 
in the 25 rotation periods between 5Ta and 30Ta after generation. We conclude that 
dissipation leads to coalescing of (unforced) cyclones by enlarging the core to a radius 
at  which a critical value of d/R'  (possibly d,/R' - 3) is exceeded. Existence of an 
absolute stability boundary at a large separation distance above which Ekman 
pumping does not lead to coalescing cannot be ruled out and experiments with much 
smaller Ekman numbers are needed. 

5. Coalescing of baroclinic vortices 
Density stratification can modify interactions between vortices through the effects 

of the baroclinic component of the velocity field and through the direct influence of 
buoyancy forces. Buoyancy forces oppose the increase in potential energy of the flow 
which must occur, in the absence of sufficient dissipation, as vortices of the same sign 
and at the mme density level approach or coalesce (Hogg & Stommel 1985). 

Two vortices (of either sign) generated in the top layer of a two-layer stratification 
coalesced whenever the distance between sources was less than a critical value, but 
did not merge from larger distances. Figure 9 (Plate 2) shows photographs of an 
experiment with AIR'  = 2.5 and d / R  = 4.5, in which the two identical anticyclones 
coalesced after t ,  x 5T, (second frame of figure 9) or t,8/2nd2 x 0.34. In all cases, 
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FIQURE 10. A classification of pairs of identical anticyclonic vortices as unstable (e), stable (O), 
or uncertain (8) defines a stability boundary (-). Stable pairs did not coalesce, unstable pairs 
did coalesce. Results for unstratified anticyclones are shown at the limit A = 0, and appear to define 
a continuous limit for the stability boundary. However, the curve is not continued because 
baroclinic instability is likely to influence behaviour at small h / R .  Elapsed dimensionless times 
before merging are shown for each pair. 

the qualitative appearance of the interacting vortices and their union was similar to 
that already described for barotropic vortices, except that motion was independent 
of depth only within each layer and that their isolation from bottom friction allowed 
the top-layer vortices to remain active for more than 60 tank rotation periods. We 
note the formation of cusps and detrainment of two spiral arms. As in the unstratified 
case, baroclinic vortex pairs with separation distances close to the critical value 
experienced oscillations in which the vortices moved closer together, developed cusps, 
exchanged some dyed water, and separated again. However, the conditions under 
which vortices combined depended upon the Rossby radius. 

Our results for symmetric anticyclonic pairs are summarized in figure 10, where 
the observations for unstratified anticyclones are included at the limit h = 0. 
Unstable conditions, under which identical anticyclones coalesced, can be separated 
by a smooth curve from stable conditions, under which the vortices moved apart for 
an indefinite time. This curve will be referred to as the stability boundary. Beginning 
at h = 0, where the critical distance is d,/R’ x 3.3, the stability boundary falls to 
slightly smaller values of the dimensionless separation with increasing Rossby radius, 
until it reaches a minimum of dJR’ x 2.7 +0.1 at AIR‘ x 1. For Rossby radii greater 
than the core radius the critical distance increases rapidly with Rossby radius and 
reaches d , / R  x 6.3 f 0 . 3  at AIR’ = 4. At this point the stability boundary might also 
be written as d ,  z 1.6h. Thus anticyclones coalesce from much greater distances 
when the Rossby radius is large compared with the core radius. In other words, the 
Rossby radius becomes the dominant horizontal lengthscale influencing vortex 
interactions . 

The dimensionless times t ,  s/2nd2, where t ,  is the time elapsed before coalescence 
as defined in 94, are given beside the data points in figure 10. The orbital periods 
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for the baroclinic pairs were approximately equal to 2xd2/s since the distance d was 
always larger than one Rossby radius, making the contribution from the baroclinic 
component of the velocity (6) small. The time t ,  ranged from 2T, to 50T, and was 
often much greater than the times recorded for barotropic anticyclones. Complete 
amalgamation generally required a further period of order lOT,. Overlapping of cusps 
generally occurred at 0.1 < t,s/2nd2 < 1 and the data show a possible systematic 
dependence of the time upon proximity to the stability boundary. This dependence 
is clear in the experiments having AIR’ x 0.38 (A = 1.5 cm), where dimensionless 
times were larger for separation distances close to the critical distance. It is 
noteworthy that the experiments with a small Rossby radius (A = 1.5 cm) also gave 
merging times that were larger than those found under other conditions, with t ,  
extending up to 47T,, or 2.3 orbital periods. 

Pairs of identical cyclonic vortices generated by sinks in the top layer also revealed 
a critical separation above which vortices moved apart and below which they 
coalesced. In this case, of course, they orbited around the centre of vorticity in the 
anticlockwise direction. The stability boundary for baroclinic cyclones was very 
similar to that in figure 10, again having a minimum of d,/R’ = 2.7 kO.1 at AIR‘ x 1, 
a steep increase of d ,  at A 5 2 R  and reaching d , / R  x 6 at AIR’ = 4. Times elapsed 
before merging were similar also. The approximate coincidence of stability boundaries 
for top-layer vortices of both signs lends support to our calibrations of core radius 
as a function of flow rates through the sources and sinks, and to the accuracy of the 
empirical boundary. The results for top-layer cyclones also support the hypothesis 
advanced in $4.2 that the apparent absence of a stability boundary for unstratified 
cyclones was a result of bottom friction rather than of the nature of cyclones. 

6. Discussion of results 
6.1. Conditions for coalescing 

The excellent agreement between the critical distance d,/R’ x 3.3 found here for 
unstratified anticyclonic vortices and that given by earlier two-dimensional numeri- 
cal simulations using the Euler equations ( d J R  x 3.2) suggests that the details of 
the vorticity distribution in the laboratory vortices had little effect on vortex 
interactions. The numerical models had piecewise uniform vorticity , while the 
laboratory flow had a smoothly varying vorticity in the core. The core radius R’ in 
the real vortex was chosen as the radius of the outer edge of the region of anomalous 
vorticity . 

A variation of the critical distance with Rossby radius when the stratification is 
weak (AIR’ 5 1) reflects the influence of the baroclinic component of the velocity field 
induced by each vortex. Baroclinicity causes a more rapid decay of the azimuthal 
velocity with increasing radius, and this effect is greatest when the Rossby radius 
is equal to the core radius. Thus the ratio of top-layer velocity at r = 3R, say, to the 
maximum velocity (always at r = R )  given by the model in 93 is 0.33 when A < R 
or A % R, but only 0.23 when A = R. Hence the advective distortion of a neighbouring 
vortex core is weakest when A x R, where a pair of vortices is likely to be stable at  
separation distances slightly smaller than the critical value for A = 0. The empirical 
stability boundary does indeed pass through a minimum near A = R. 

It is more difficult to explain the observed increase of the critical separation 
distance at large Rossby radii. Coalescing from large distances at AIR’ > 2 can only 
be attributed to the effects of the large horizontal lengthscale A on the velocity field 
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induced in the top layer by each vortex. The flow induced in the bottom layer is 
unlikely to influence vortex interactions as potential vorticity, not relative vorticity, 
is the dynamically significant property of geostrophic flow. Although the bottom 
layer contained a velocity maximum at r - A (when A % R‘), this layer initially had 
a uniform potential vorticity . Dissipation could produce only very small differences 
in potential vorticity in the bottom layer (because the velocities there were small). 
Hence we conclude that the layer remained passive. 

Our data are not sufficient to enable us to ascertain whether the stability boundary 
asymptotes to a constant value (d, 2 7 R )  at A % R or whether the critical distance 
continues to increase with increasing Rossby radius, perhaps as rapidly as d, - A. 
Which ever is the case, the coalescing of pairs of ‘strongly stratified’ vortices from 
large separation distances is a surprising result. In the absence of dissipation and in 
the limit h/R  % 1, the quasi-geostrophic model of $3  shows that the available 
potential energy associated with interface displacements must double when two 
identical vortices in the same layer are brought from infinity to coalesce into a single 
vortex (Hogg & Stommel 1985). In at least some of the experiments, merging of 
top-layer vortices began within times as short as t ,  e 2T, and was completed within 
as little as 5T,, times much smaller than the spin-up timescale (at least 40T,) for the 
top layer. Hence the rate of dissipation of kinetic energy in Ekman boundary layers 
(with consequent conversion of potential to kinetic energy in order to maintain 
geostrophic balance) is unlikely fo have been sufficient to prevent an increase in 
potential energy during coalescence. 

If  we consider coalescence as a barotropic (shear-induced) instability then it is 
pertinent to note that other barotropic instabilities in stratified flows (e.g. Kelvin- 
Helmholtz instability) are known to increase the potential energy of the fluid. If such 
an energy transformation occurred during vortex merging, it would not therefore be 
unusual. On the other hand, it is possible that large horizontal velocity gradients 
produced during merging may lead to dissipation sufficient to avoid an increase in 
potential energy. This is shear-enhanced diffusion, in this case accompanying a 
cascade of enstrophy to small scales. The growth of two ‘spiral arms’ of core fluid, 
arms that are separated from the new combined core by bands of outer irrotational 
fluid, provides a likely site for alteration of the potential vorticity of the fluid thrown 
out into those arms. This dissipation is equivalent to a loss of volume from the core 
region and in the barotropic case is known to allow conservation of angular 
momentum. In the baroclinic case we speculate that the spiral arms not only conserve 
the angular momentum of the system, but might also allow coalescence to proceed 
without an increase in potential energy. Unfortunately, we were unable to determine 
whether the vertical displacement of the density interface increased during coales- 
cence, as this would have been indicative of potential-energy changes. It is as well 
also to recall here Dritschel’s (1985) result for the barotropic case: extremely small 
amounts of dissipation (measured as the ratio of the time t,  required for complete 
coalescence to the dissipation timescale 7 ,  tM/7 < 1) can facilitate completion of 
transitions that could not occur in an ideal fluid. Hence the role of dissipation, both 
by Ekman layers on horizontal boundaries and by horizontal diffusion, in interactions 
of baroclinic vortices remains to be clarified. 

Another possible mechanism for dissipation and alteration of potential vorticity 
during coalescence is proposed by Nof (1986). He suggests that internal bores (shock 
waves) may form at the noses of the tentacles of fluid which flow from each eddy 
and encircle the neighbouring eddy. Fluid in the tentacles initially possesses the 
anomalous potential vorticity of the vortex cores and forms a contrast with the 
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ambient fluid. If such bores are able to effect sufficient alteration of potential vorticity 
then coalescing would not require an increase in potential energy nor, in the case of 
isolated frontal eddies, an increase in the total energy of the flow. Nof (1986) suggests 
that internal bores occur during close interactions of isolated frontal eddies. However, 
it is clear from his analysis (and also from our laboratory observations) that fluid 
within the spiralling tentacles does not travel toward the nose of the tentacle. Hence 
very little of the vortex fluid can be expected to be processed by a bore. Furthermore, 
the details of the merging process as observed in our experiments with two-layer 
(non-isolated) vortices are so remarkably similar to those of the coalescence of 
unstratified, two-dimensional vortices that we are led to argue that internal bores 
(which cannot exist in the barotropic case) play no role in the interaction of baroclinic 
eddies. Indeed, it is unlikely that shocks can form even in our two-layer case, since 
depth perturbations were very small compared with the layer depth. 

6.2. Coalescing V e r a  baroelinic instability 
While coalescing of vortices can be thought of as a barotropic instability (one which 
may conceivably increase the potential energy of the flow), it is known that individual 
baroclinic vortices will break-up under certain conditions as a result of baroclinic 
instability, a process which reduces the available potential energy. Baroclinic 
instability occurs when the horizontal lengthscale of the flow is large compared with 
the Rossby radius. For example, two-layer vortices generated by a small source of 
less dense water a t  the surface of a more dense solution break up into smaller 
structures when A/R < lo-' (Griffiths & Linden 1981), where R is a core radius. Thus 
even if two stable vortices approached each other and coalesced according to the 
results presented above, the larger combined vortex would exceed this baroclinic 
stability criterion and break-up again when each of the original vortices satisfied 
AIR < 0.2. While the criterion is only approximate, it serves to indicate that there 
may be a competition between the fusion of vortices having small Rossby radii or 
large core sizes, and fission of the vortex so produced. Indeed, such a competition 
forms a part of stratified geostrophic turbulence in which there is an energy cascade 
towards smaller horizontal wavenumbers and a blocking of this cascade at  a 
wavenumber of order A-' by baroclinic instability. Coalescence of vortices is one 
mechanism by which energy can be transferred to larger scales, while baroclinic 
instability tends to place an upper bound on the scale of eddies and returns energy 
to a smaller scale. 

The inevitable break-up of vortices at  small values of A I R  as a result of baroclinic 
instability leads to an uncertainty in our stability-boundary delineating conditions 
under which vortex pairs are stable to vortex merger (we have left a break in this 
curve at  A / R  < 0.2, figure 10). The timescale for merging ( - d * / s )  is in general 
independent of that for growth of unstable baroclinic waves ( - lOf-'). Hence it might 
be possible for two vortices to completely coalesce before waves have time to grow 
and break the vortex apart. The stability boundary would then continue smoothly 
to the barotropic limit. However, fusion of laboratory vortices a t  h / R  % 0.38 
required tens of rotation periods, a result largely determined by the Rossby number 
of the flow, and similar timescales are expected for still smaller Rowby radii. These 
times are similar to or greater than those required for fission of the product vortex. 
Hence it is unlikely that fusion would occur at  A / R  < 0.2. We did not venture to 
explore these conditions in our experiments. Finally we note that baroclinic 
instability must give way to only barotropic shear instability close to  the limit 
A/R+O, where we find that amalgamated vortices are stable. 

4 RLY 178 
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6.3. Experiments with dissimilar vortices 
Only interactions of two identical vortices have been discussed so far. In  some 
additional experiments, two vortices of the same sign were generated using different 
forcing flow rates during the usual 30 s forcing period. The resulting vortices were 
expected to have similar potential vorticities but different core radii and intensities. 
These unequal vortices coalesced from larger separation distances than did identical 
vortices, although the relationship between the ratio of intensities and critical 
distance was not explored in detail. When merging occurred the weaker vortex was 
always drawn out and wrapped around the outside of the stronger core. An 
interaction of two anticyclones with different intensities is shown in figure 11. Water 
originally in the top-layer core of the weaker vortex is eventually found in an annular 
volume surrounding the stronger core. The two unstratified cyclones shown coalescing 
in figure 7, although nominally of equal strength, also led to an asymmetric spiral 
pattern in the final stages of coalescence, suggesting that the vortex containing blue 
dye was very slightly weaker than that containing yellow dye. 

Our observations for unequal pairs of both barotropic and baroclinic vortices are 
consistent with the behaviour found in numerical simulations for the two- 
dimensional, unstratified case. Overman & Zabusky (1982) described the asymmetric 
interaction as ‘entrainment ’ of the region of greater vorticity density (the stronger 
vortex core) within the region of smaller vorticity density. 

6.4. Ocean eddies and tropical cyclones 
Among the most energetic of features in ocean circulation are the large warm-core 
and cold-core eddies formed from the intense western boundary currents. The eddies, 
or ‘rings’, are generated by baroclinic instability of the currents. They therefore have 
diameters that scale with the internal Rossby radius. The eddies lie in a density 
stratification that is often modelled as two layers - an upper layer approximately 
200m deep overlying a much deeper bottom layer. However, the interface is 
displaced downward by warm-core eddies to depths close to 500 m. The appropriate 
Roasby radius based on the depth of the eddies is about 30 km. 

Hydrographic surveys of Gulf Stream warm-core rings (e.g. Olson et al. 1985) 
indicate that there is a maximum azimuthal velocity of approximately 0.6 ms-’ at 
a radius of 50 km. Warm anticyclonic eddies formed in the Tasman Sea by the East 
Australia Current tend to be somewhat larger, with maximum velocities between 1 
and 2 ms-l a t  a radius as large as 100 km (e.g. Andrews & Scully Power 1976; Nilsson 
& Cresswell 1980 ; Cresswell & Legeckis 1986). Taking the radius of maximum velocity 
as an estimate for the core radius R ,  the ratio of Roasby radius to core radius for 
ocean eddies lies in the range 0.3 < A / R  < 0.6. The Rossby number c/f % -0.3 is 
similar to that in our laboratory vortices. Assuming that the real density profiles do 
not greatly influence interactions between eddies, the experiments indicate that two 
ocean eddies will coalesce if their centres are brought to within three core radii. This 
critical distance will be about 150 km for Gulf Stream rings and up to 300 km for 
East Australia Current eddies. 

A notable difference between the two-layer laboratory eddies and warm ocean 
eddies formed by frontal systems such as the Gulf Stream is that the latter eddies 
are much deeper than the ambient upper layer. Frontal eddies are therefore often 
modelled as vortices in which the density interface intersects the surface around their 
perimeter, confining the upper-layer water solely within the eddies (Flier1 1979). In  
order to observe the interaction of two such frontal eddies, we carried out experiments 
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FIGURE 11. Photographs of the interaction between two baroclinic anticyclones of differing 
strengths. - These were generated using differing source flow rates: d =20cm, A =  lOcm, 
R x 3.7 cm, d / r  x 2.7. The weaker vortex is drawn out and wrapped around the stronger. 
Photographs were taken after (a) 10, ( b )  20, (c) 29 and ( d )  40 rotation periods. As in all experiments, 
tank rotation waa anticlockwise. 

in which two anticyclones similar to those used by Griffiths & Linden (1981) were 
produced by injecting dyed less-dense water through two sources at the surface of 
a more-dense sugar solution. These vortices too coalesced whenever the sources were 
sufficiently close together, and interactions were qualitatively similar to those 
described in $84 and 5. Although the depth of the top layer in these experiments 
vanished on the perimeter of the eddies, the eddies were not truly isolated because 
injection of the buoyant fluid caused divergence in the lower layer and consequent 
anticyclonic motion. Two frontal eddies therefore orbited around each other before 
their edges touched. 

Although there are few observations that suggest that ocean eddies ever coalesce, 
an amalgamation of two warm eddies in the Tasman Sea was extensively documented 

4-2 
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(Cresswell 1982; Cresswell & Legeckis 1986). In  January 1981 eddies ‘Leo’ and 
‘Maria’ came into close proximity. They rotated in the anticyclonic direction 
(anticlockwise in the southern hemisphere) about a point on the line joining their 
centres for about 20 days before coalescing into one stronger eddy. The reported 
drifter and satellite data can be used to estimate azimuthal water velocities within 
‘Leo’ of v, x 0.7 ms-’ at a radius of about 80 km during December 1980. Tem- 
perature sections indicate that this radius is close to that at which the maximum 
geostrophic velocity should exist. ‘ Maria ’ appeared slightly larger, with velocities of 
about 0.6 ms-’ at R x 100 km, which is again close to the radius at which the 
geostrophic velocity estimated from temperature sections should be a maximum. In 
otherwise stationary surroundings these eddies should have rotated around their 
mutual centre of vorticity with a period of 4xd2[1 + ( d / A )  K,(d/A)]/(s, +s2), where s1 
and s2 are the vortex intensities. Since AIR 4 1, the intensities are given by s x 2Rv,. 
When the eddies began to orbit each other their centres were 160 km apart, giving 
d/A % 1 and an orbital period of about 16 days. Cresswell (1982) reports a slower 
motion through roughly 90” in 20 days, probably a result of the influence of the 
nearby continental shelf and other eddies. 

The close interaction of ‘Leo ’ and ‘Maria’ lasted for 20 days, a time consistent with 
the broad range of elapsed times (up to two orbital periods) found in the experiments 
with small Rossby radii. Furthermore, the separation distance d = 160 km gives 
d / R  x 1.6-2.7, placing the vortices below the stability boundary for coalescing. A 
small tongue of water from eddy ‘Leo’, the weaker of the two, was detected around 
the perimeter of ‘Maria’ (at R x 90 km) a few days before the eddies coalesced. Such 
a feature was often seen in the experiments. After coalescence, the combined eddy 
was slightly more intense than either original vortex, with the water velocity reaching 
a maximum of approximately 1.4 ms-l at a radius of 100 km. An additional 
complication in this event was that the original eddies contained waters of different 
densities. These water masses were later recognizable as two distinct layers overlying 
each other in the core of the combined eddy. 

At the opposite extreme to barotropic vortices and baroclinic ocean eddies are 
intense atmospheric cyclones or hurricanes. Hurricanes often develop in pairs 
(Hoover 1961 ; Brand 1970) and rotate around each other. The individual hurricanes 
have small core radii (R’ x 10-80 km) and are embedded in the tropical atmosphere, 
which has a large internal Rossby radius (A x 800 km). Thus A / R  = 10-80. Extra- 
polation of the empirical stability boundary for pairs of identical vortices to such large 
ratios of Rossby radius to core radius, although uncertain and neglectful of bottom 
friction, indicates that two hurricanes will coalesce from distances of at least 
d, x 7 R .  Bottom friction is likely to further increase the critical distance. Hence 
d* = 100-600 km (depending on the core radius) is a lower limit for the critical 
separation distance. Since the observed orbital periods for hurricane pairs with 
separations close to 500 km, say, are between two and four days (Gryanik 1983), our 
experiments indicate the merging would take place within 10 hours of hurricane 
development. Such rapid coalescence is consistent with the almost complete absence 
of observations of hurricane pairs having separations of less than 400 km. Hurricane 
pairs having separations of less than 750 km are known to attract each other (Brand 
1970) but owing to both the greater distance and effects of bottom friction are 
predicted to take much longer to merge, if they do so at  all. 
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7. Conclusions 
A pair of like geostrophic vortices generated by sources or sinks in a rotating fluid 

coalesce into a single vortex if the vortex centres are placed less than a critical 
distance apart. The critical distance for two identical barotropic vortices is equal to 
3.3 core radii R’, where R is the radius of the region of anomalous potential vorticity. 
This result is in excellent agreement with previous numerical simulations of the 
interaction of two-dimensional vortices having piecewise uniform vorticity in a 
non-rotating fluid. The background rotation in the experiments with no density 
gradients serves only to provide a convenient means of creating vortices in a 
well-controlled manner. Coriolis forces associated with the background rotation are 
balanced by a geostrophic component of the pressure gradient, leaving the flow to 
behave as it would in a non-rotating system. Furthermore, in appearance at least, 
the coalescence of an isolated pair of vortices is similar to the vortex ‘pairing’ 
observed in unstable shear layers. If the original vortices are identical the final union 
consists of two entwined spirals of fluid, each spiral containing water from one of the 
original vortices. If the original vortices are unequal, the water within the weaker 
vortex is wrapped around the core of the stronger vortex. 

Additional effects due to Ekman pumping through Ekman layers on rigid 
boundaries perpendicular to the axes of vortices were observed for cyclone pairs. 
These effects are likely to be relevant also to vortices of both signs in contact with 
rigid boundaries in mn-rotating systems. Cyclones, like all vortices in non-rotating 
flows, are spun down by Ekman pumping which, at the same time, causes the radius 
of the vortex core to enlarge. Our experiments show that such vortices coalesce from 
distances larger than the critical distance for inviscid vortices. Interactions of 
anticyclones are not significantly influenced by viscosity. 

Baroclinic vortices too have a critical separation distance below which they 
coalesce, despite a potential-energy barrier. When the Rossby radius is close to one 
core radius the velocity decays more rapidly with radius in each vortex than it does 
in the barotropic limit, and vortices must be brought close together before they will 
coalesce. However, when the Rossby radius is greater than two core radii baroclinic 
vortices merge from much greater distances. The former case is relevant to ocean 
eddies, which are characterized by core rctdii larger than the Rossby radius. The ocean 
eddies should coalesce when d < 3 R ,  and this prediction is consistent with the 
behaviour observed in one event. However, it should be noted here that both our 
theoretical and laboratory models of baroclinic eddies give azimuthal velocities that 
decay with radius as 1 / ~  at large distances from the vortex centre. Hence these are 
not isolated eddies, whereas warm-core eddies shed from major western boundary 
currents are often modelled as isolated structures (for which the velocity field decays 
more rapidly with radius). Such isolated eddies are likely to interact more weakly 
at distance and to experience a greater potential-energy barrier to coalescence. In  
our experiments, the development of two ‘ spiral arms ’ of core fluid conserves angular 
momentum and, through the detrainment of volume from the vortex cores (or 
equivalently by alteration of the potential vorticity of some core fluid), may also allow 
merging to continue without an increase of the potential energy. 
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